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Numerical Investigation of Fredholm Integro- 
Differential Equations by STHWS Method 

S. Sekar and C. Jaisankar 
 

Abstract— In this paper presents a method based on Haar wavelet approximation using single-term Haar wavelet series (STHWS) to 
obtain approximate numerical solution of Fredholm integro-differential equations of first [26] and second order [5]. The numerical results 
obtained by the present method compares favorably with those obtained by various methods earlier in the literature. The obtained discrete 
solutions were compared with exact solutions of the Fredholm integro-differential equations of first [26] and second order [5] and Runge-
Kutta method (RK) to highlight the efficiency of the STHWS. 

Index Terms— Integro-differential equations, Fredholm Integro-differential equations, Haar wavelets, Runge-Kutta method, Single-term 
Haar wavelet series.   
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1 INTRODUCTION                                                                     

ntegro-Differential Equation (IDE) is an important branch of 
modern mathematics and arises frequently in many applied 

areas which include engineering, mechanics, physics, chemis-
try, astronomy, biology, economics, potential theory and elec-
trostatics (Kurt and Sezer, 2008). IDE is an equation that the 
unknown function appears under the sign of integration and it 
also contains the derivatives of the unknown function. It can 
be classified into Fredholm equations and Volterra equations. 
The upper bound of the region for integral part of Volterra 
type is variable, while it is a fixed number for that of Fredholm 
type. In this study, we focus on first and second order linear 
Fredholm integrodifferential equation.  

In the engineering field, numerical approaches were prac-
ticed to obtain an approximation solution for the problem [1]. 
To solve a linear integro-differential equation numerically, 
discretization of integral equation to the solution of system of 
linear algebraic equations is the basic concept used by re-
searchers to solve integro-differential problems. By consider-
ing numerical techniques, there are many methods can be 
used to discretize problem [1] such as compact finite differ-
ence (Zhao and Corless, 2006), Wavelet-Galerkin (Avudaina-
yagam and Vani, 2000), variational iteration method (Sweilam, 
2007) rationalized Haar functions (Maleknejad et al., 2004), 
Tau, (Hosseini and Shahmorad, 2003), Lagrange interpolation 
(Rashed, 2003), piecewise approximate solution (Hosseini and 
Shahmorad, 2005), conjugate gradient (Khosla and Rubin, 
1981), quadraturedifference (Fedotov, 2009), variational (Saad 
and Schultz, 1986), collocation (Aguilar and Brunner, 1988), 
homotopy perturbation (Yildirim, 2008) and Euler-Chebyshev 

method (Van der Houwen and Sommeijer, 1997). Earlier nu-
merical treatment has been done for first order integro-
differential equation (Aruchunan and Sulaiman, 2009). 

In this conjunction, there are many iterative methods un-
der the category of Krylov subspaces have been proposed 
widely to be one of the feasible and successful classes of nu-
merical algorithms for solving linear systems. Actually, there 
are several Krylov subspaces iterative methods can be consid-
ered such as Conjugate Gradient (CG) (Hestenes and Stiefel, 
1952), Generalized Minimal Residual (GMRES) (Saad and 
Schultz, 1986), Conjugate Gradient Squared (Sonneveld, 1989), 
Bi-Conjugate Gradient Stabilized (Bi-CGSTAB) (Van der Vorst, 
1992) and Orthogonal Minimization (ORTHOMIN) (Vinsome, 
1976).  

STHWS plays an important role in both the analysis and 
numerical solution of differential inclusions. STHWS can have 
a significant impact on what is considered a practical ap-
proach and on the types of problems that can be solved. How-
ever, working with integro-differential equations places spe-
cial demands on STHWS codes. In recent years, there has been 
an increased interest in several methods were arisen to solve 
the Fredholm integro-differential equations. STHWS can have 
a significant impact on what is considered a practical ap-
proach and on the types of problems that can be solved. S. 
Sekar and team of his researchers [17 - 23] introduced the 
STHWS to study the time-varying nonlinear singular systems, 
analysis of the differential equations of the sphere, to study on 
CNN based hole-filter template design, analysis of the singu-
lar and stiff delay systems and nonlinear singular systems 
from fluid dynamics, numerical investigation of nonlinear 
volterra-hammerstein integral equations, to study on periodic 
and oscillatory problems,  and numerical solution of nonlinear 
problems in the calculus of variations.  

Wavelets theory is a relatively new and an emergine area 
in mathematical research. It has been applied in a wide range 
of engineering disciplines; particularly Wavelets are very suc-
cessfully used in signal analysis for Wave form representa-
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tions and segmentations, time-frequency analysis and fast al-
gorithm for easy implementation. Han Danfu introduced 
CASWavelet method to solve integro-differential equations 
[7]. P. Darania introduced a method for solve integro-
differential equations [4]. 

In this work we apply STHWS method to solve linear 
Fredholm integro-differential equations of first [26] and se-
cond order [] and we will show that convergent rate of 
STHWS is more accelerate than the methods presented in [26, 
].   

2 PRELIMINARIES 
Consider the linear Fredholm integro-differential equation as 

( ) ( ) ( ) ( )dttytxkxfxy
b

a
∫+=′ ,  

with initial conditions 
( ) 00 yy =  

and the second order linear Fredholm integro-differential 
equation as 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )xfdttytxkxyxrxyxqxyxp
b

a

=++′+′′ ∫ ,  

with initial conditions 
( ) ( ) myny ==′ 0,0  

Where the functions 
( ) ( ) ( )xrxqxp ,, = Constant matrices 

( )xf   = A given vector function, the kernel 

( )txk ,   = A given matrix function 

( )xy   = The solution to be determined 

3 SINGLE-TERM HAAR WAVELET SERIES METHOD 
The orthogonal set of Haar wavelets ( )thi  is a group of square 

waves with magnitude of 1± in some intervals and zeros 
elsewhere [17]. In general, 
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Namely, each Haar wavelet contains one and just one 
square wave, and is zero elsewhere. Just these zeros make 
Haar wavelets to be local and very useful in solving stiff sys-
tems. Any function y(t), which is square integrable in the in-
terval [0,1). Can be expanded in a Haar series with an infinite 
number of terms 
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where the Haar coefficients 

( )∫=
1

0

)(2 dtthtyc i
j

i  

are determined such that the following integral square error 
ε is minimized:  
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usually, the series expansion Equation (1) contains an infinite 
number of terms for a smooth y(t). If y(t) is a piecewise con-
stant or may be approximated as a piecewise constant, then 
the sum in Eq. (1) will be terminated after m terms, that is  

( ) ( ) ( ) ( ) [ ]1,0,)(
1

0
∈=≈ ∑

−

=

tthcthcty m
T
m

m

i
ii             

( ) ( ) [ ] ,... 110
T

mm ccctc −=                                            (2) 

( ) ( ) ( ) ( ) ( )[ ] ,... 110
T

mm thththth −=  

where “T” indicates transposition, the subscript m in the 
parantheses denotes their dimensions. The integration of Haar 
wavelets can be expandable into Haar series with Haar coeffi-
cient matrix P[3].  

( ) ( ) ( ) ( ) ( ) [ ]∫ ∈≈ × 1,0, tthPdh mmmm tt  

where the m-square matrix P is called the operational matrix 

of integration and single-term ( ) 2
1

11 =×P . Let us define [17] 

( ) ( ) ( ) ( ) ( ) ( )tMthth mm
T
mm ×≈ ,                                             

      
and ( ) ( ) ( ).011 thtM =×  Equation (3) satisfies    

( ) ( ) ( ) ( ) ( ) ( ),thCctM mmmmmm ×× =  

where ( )mc  is defined in Equation (2)  and ( ) 011 cC =× .   

4 NUMERICAL EXAMPLES FOR FREDHOLM INTEGRO-
DIFFERENTIAL EQUATIONS OF FIRST ORDER  

To show the efficiency of the STHWS, we have considered the 
following problem taken from [26], with step size 1.0=h  
along with the exact solutions. The discrete solutions obtained 
by the two methods, STHWS and the Adomian’s Decomposi-
tion Method (ADM); the absolute errors between them are 
tabulated and are presented in Table 1 - 3. To distinguish the 
effect of the errors in accordance with the exact solutions, 
graphical representations are given for selected values of 
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“ x “and are presented in Fig. 1 to Fig. 3 for the following 
problems, using three dimensional effects. 
 
Example 4.1 Cosider the following linear Fredholm integro-
differential equation [26] 

( ) ( )dttxyxexexy xx ∫+−+=′
1

0

 

with initial conditions 
( ) 00 =y  

The exact solution is as follows: 
( ) xxexy =    

  
TABLE 1 

EXACT AND DISCRETE SOLUTIONS OF EXAMPLE 4.1  

 
x 

Example 4.1 
Exact So-

lutions 
ADM Solu-

tions 
STHWS 
Solution 

0  0 0 0 
0.1  0.1105171 0.1105408 0.1105173 
0.2  0.2442806 0.2443243 0.244281 
0.3  0.4049576 0.4050213 0.4049582 
0.4  0.5967299 0.5968136 0.5967307 
0.5  0.8243606 0.8244643 0.8243616 
0.6  1.0932713 1.093495 1.0932725 
0.7  1.4096269 1.4097706 1.4096283 
0.8  1.7804327 1.7805964 1.7804343 
0.9  2.2136428 2.2138265 2.2136446 
1  2.7182818 2.7184855 2.7182838 

 
 

 
Fig. 1. Error graph for Example 4.1 

 
 
Example 4.2 Cosider the following linear Fredholm integro-
differential equation [26] 

( ) ( )dttxtyxxy ∫+−=′
1

03
11  

with initial conditions 
( ) 00 =y  

The exact solution is as follows: 
( ) xxy =      

 
TABLE 2 

EXACT AND DISCRETE SOLUTIONS OF EXAMPLE 4.2 

 
x 

Example 4.2 
Exact So-
lutions 

ADM Solu-
tions 

STHWS 
Solution 

0  0 0 0 
0.1  0.1 0.1000237 0.1000002 
0.2  0.2 0.2000437 0.2000004 
0.3  0.3 0.3000637 0.3000006 
0.4  0.4 0.4000837 0.4000008 
0.5  0.5 0.5001037 0.500001 
0.6  0.6 0.6001237 0.6000012 
0.7  0.7 0.7001437 0.7000014 
0.8  0.8 0.8001637 0.8000016 
0.9  0.9 0.9001837 0.9000018 
1  1 1.0002037 1.000002 

 
 

 
Fig. 2. Error graph for Example 4.2 

 
Example 4.3 Cosider the following linear Fredholm integro-
differential equation [26] 

( ) ( ) ( )[ ( ) ( )

( ) ( ) ( )]xx

xxydttytxxy

πππ

πππ

4sin2/12sin2

2cos24sin
1

0

−−

−++=′ ∫  

with initial conditions 
( ) 10 =y  

The exact solution is as follows: 
( ) ( )xxy π2cos=  

 
 

TABLE 3 
EXACT AND DISCRETE SOLUTIONS OF EXAMPLE 4.3 

 
x 

Example 4.2 
Exact So-
lutions 

ADM Solu-
tions 

STHWS 
Solution 
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0  1 1 1 
0.1  -0.1279637 -0.12794 -0.1279635 
0.2  -0.9672506 -0.9672069 -0.9672502 
0.3  0.3755096 0.3755733 0.3755102 
0.4  0.8711474 0.8712311 0.8711482 
0.5  -0.5984601 -0.5983564 -0.5984591 
0.6  -0.7179851 -0.7178614 -0.7179839 
0.7  0.7822121 0.7823558 0.7822135 
0.8  0.5177956 0.5179593 0.5177972 
0.9  -0.9147302 -0.9145465 -0.9147284 
1  -0.2836911 -0.2834874 -0.2836891 

 

 
Fig. 3. Error graph for Example 4.3 

 

5 NUMERICAL EXAMPLE FOR FREDHOLM INTEGRO-
DIFFERENTIAL EQUATIONS OF SECOND ORDER 

To show the efficiency of the STHWS, we have considered the 
following problem taken from [5], with step size 1.0=h  
along with the exact solutions. The discrete solutions obtained 
by the two methods, STHWS and the Generalized Minimal 
Residual (GMRES) methods; the absolute errors between them 
are tabulated and are presented in Table 1 - 4. To distinguish 
the effect of the errors in accordance with the exact solutions, 
graphical representations are given for selected values of 
“ x “and are presented in Fig. 1 to Fig. 6 for the following 
problem, using three dimensional effects. 
 
Example 5.1 Cosider the following linear Fredholm integro-
differential equation [5] 

( ) ( ) ( ) [ ]5,0,
3

19
5

0

15

∈+
−

+=′′ ∫
−

xdttyexyxy  

with initial conditions 
( ) ( ) 30,10 −=′= yy  

The exact solution is as follows: 
( ) xexy 3−=      

 
TABLE 4 

EXACT AND DISCRETE SOLUTIONS OF EXAMPLE 5.1 
 Example 5.1 

x Exact So-
lutions 

GMRES 
Solutions 

STHWS 
Solution 

0  1 1 1 
0.1  0.7408182 0.7408419 0.7408184 
0.2  0.5488116 0.5488553 0.548812 
0.3  0.4065697 0.4066334 0.4065703 
0.4  0.3011942 0.3012779 0.301195 
0.5  0.2231302 0.2232339 0.2231312 
0.6  0.1652989 0.1654226 0.1653001 
0.7  0.1224564 0.1227001 0.1224578 
0.8  0.090718 0.0908817 0.0907196 
0.9  0.0672055 0.0673892 0.0672073 
1  0.0497871 0.0499908 0.0497891 

 

 
Fig. 4. Error graph for Example 5.1 

6 CONCLUSION 
In this paper, a new numerical method for solving Fredholm 
integro-differential equations of first and second order pro-
posed. Here the Fredholm integro-differential equations of 
first and second order are solved by using STHWS method. 
From the numerical examples, we could conclude that the 
proposed method almost coincides with the exact solutions of 
the problems. From the Table 1-4 and Figures 1-4, compare to 
ADM [26] and GMRES [5] methods STHWS method gave bet-
ter results and shows the STHWS method efficiency.  

ACKNOWLEDGMENT 
The authors gratefully acknowledge the Dr.A.R.Rajamani, 
Principal, Government Arts College (Autonomous), Salem-636 
007, for encouragement and support. The authors also thank 
Mr.R.P.Sampathkumar, Associate Professor and Head of the 
Department of Mathematics, Government Arts College (Au-
tonomous), Salem-636 007, Tamil Nadu, India, for his kind 
help and encouragement. 

REFERENCES 
[1] Aguilar, M. and H. Brunner, 1988. Collocation methods for second-

order Volterra integro-differential equations. Applied Numer. Math., 
4: 455-470. DOI: 10.1016/0168-9274(88)90009-8 

[2] Aruchunan, E. and J. Sulaiman, 2009. Numerical solution of first kind 
linear Fredholm Integrodifferential equation using conjugate gradi-

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research, Volume 5, Issue 3, March-2014                                                                              292 
ISSN 2229-5518 

IJSER © 2014 
http://www.ijser.org 

ent method. Proceedings of the Curtin Sarawak 1st International 
Symposium on Geology, Sept. 2009, pp: 11-13. 

[3] Avudainayagam, A. and C. Vani, 2000. Wavelet-Galerkin method for 
integro-differential equations. Applied Math. Comput., 32: 247-254. 
DOI: 10.1016/S0168-9274(99)00026-4 

[4] P. Darania, Ali Ebadian, A method for the numerical solution of the 
integro-differential equation, APP. Math. comput. 188 (2007), 657-
668. 

[5] Elayaraja Aruchunan and Jumat Sulaiman, “Numerical Solution of 
Second-Order Linear Fredholm Integro-Differential Equation Using 
Generalized Minimal Residual Method”, American Journal of Ap-
plied Sciences 7 (6): 780-783, 2010 

[6] Fedotov, A.I., 2009. Quadrature-difference methods for solving linear 
and nonlinear singular integrodifferential equations. Nonlinear 
Anal., 71: 303-308. DOI: 10.1016/j.na.2008.10.075 

[7] Han Danfu,shang Xufeng, Numerical solution of integro-differential 
equations by applying CAS Wavelet operational matrix of integra-
tion, APP. Math. comput. 194 (2007), 460-466 

[8] Hestenes, M. and E. Stiefel, 1952. Methods of conjugate gradients for 
solving linear system. J. Res. Nat. Bur. Stand., 49: 409-436. 
http://nvl.nist.gov/pub/nistpubs/jres/049/6/V49.N06.A08.pdf 

[9] Hosseini, S.M. and S. Shahmorad, 2003. Tau numerical solution of 
Fredholm integro-differential equations with arbitrary polynomial 
bases. Applied Math. Model, 27: 145-154. DOI: 10.1016/S0307-
904X(02)00099-9 

[10] Hosseini, S.M. and S. Shahmorad, 2005. Numerical piecewise approx-
imate solution of Fredholm integro-differential equations by the Tau 
method. Applied Math. Model., 29: 1005-1021. 
DOI:10.1016/j.apm.2005.02.003 

[11] Khosla, P.K. and S.G. Rubin, 1981. A conjugate gradient iterative 
method. Comput. Fluids, 9: 109-121. DOI: 10.1016/0045-
7930(81)90020-7 

[12] Kurt, N. and M. Sezer, 2008. Polynomial solution of high-order 
Fredholm integro-differential equations with constant coefficients. J. 
Franklin Inst., 345: 839-850. DOI: 10.1016/j.jfranklin.2008.04.016 

[13] Maleknejad, K., F. Mirzaee and S. Abbasbandy, 2004. Solving linear 
integro-differential equations system by using rationalized Haar 
functions method. Applied Math. Comput., 155: 317-328. DOI: 
10.1016/S0096-3003(03)00778-1 

[14] Rashed, M.T., 2003. Lagrange interpolation to compute the numerical 
solutions differential and integrodifferential equations. Applied 
Math. Comput., 151: 869-878. DOI: 10.1016/S0096-3003(03)00543-5 

[15] Saad, Y. and M.H. Schultz, 1986. GMRES: A generalized minimal 
residual algorithm for solving non-symmetric linear sytems. SIAM J. 
Sci. Stat. Comput., 7: 856-869. DOI: 10.1137/0907058 

[16] Saad, Y., 2003. Iterative Methods for Sparse Linear Systems. Society 
for Industrial and Applied Mathematics (SIAM). ISBN: 0898715342, 
pp: 158. 

[17] S. Sekar and A. Manonmani, “A study on time-varying singular non-
linear systems via single-term Haar wavelet series”, International Re-
view of Pure and Applied Mathematics, vol.5, pp. 435-441, 2009.  

[18] S. Sekar and G.Balaji, “Analysis of the differential equations on the 
sphere using single-term Haar wavelet series”, International Journal of 
Computer, Mathematical Sciences and Applications, vol.4, pp.387-393, 
2010. 

[19] S. Sekar and M. Duraisamy, “A study on CNN based hole-filler tem-
plate design using single-term Haar wavelet series”, International 
Journal of Logic Based Intelligent Systems, vol.4, pp.17-26, 2010. 

[20] S. Sekar and K. Jaganathan, “Analysis of the singular and stiff delay 
systems using single-term Haar wavelet series”, International Review 
of Pure and Applied Mathematics, vol.6, pp. 135-142, 2010. 

[21] S. Sekar and R. Kumar, “Numerical investigation of nonlinear volter-

ra-hammerstein integral equations via single-term Haar wavelet se-
ries”, International Journal of Current Research, vol.3, pp. 099-103, 2011. 

[22] S. Sekar and E. Paramanathan, “A study on periodic and oscillatory 
problems using single-term Haar wavelet series”, International Journal 
of Current Research, vol.2, pp. 097-105, 2011. 

[23] S. Sekar and M. Vijayarakavan, “Analysis of the non-linear singular 
systems from fluid dynamics using single-term Haar wavelet series”, 
International Journal of Computer, Mathematical Sciences and Applica-
tions, vol.4, pp. 15-29, 2010. 

[24] Sonneveld, P., 1989. CGS A fast Lanczos-type solver for nonsymmet-
ric linear systems. SIAM J. Sci.Stat.Comput., 10: 36-52. DOI: 
10.1137/0910004 

[25] Sweilam, N.H., 2007. Fourth order integro-differential equations 
using variational iteration method. Comput. Math. Appli, 54: 1086-
1091. DOI: 10.1016/j.camwa.2006.12.055 

[26] A. R. Vahidi, E. Babolian, Gh. Asadi Cordshooli and Z. Azimzadeh, ” 
Numerical Solution of Fredholm Integro-Differential Equation by 
Adomian’s Decomposition Method”, Int. Journal of Math. Analysis, 
Vol. 3, 2009, no. 36, 1769 – 1773. 

[27] Van der Houwen, P.J. and B.P. Sommeijer, 1997. Euler-Chebyshe 
methods for integro-differential equations. Applied Numer. Math., 
24: 203-218. DOI: 10.1016/S0168-9274(97)00021-4 

[28] Van der Vorst, H., 1992. Bi-CGSTAB: A fast and smoothly converging 
variant of Bi-CG for the solution of non-symmetric linear systems. 
SIAM J. Sci. Stat.Comput., 13: 631-644. DOI: 10.1137/0913035 

[29] Vinsome, P.K.W., 1976. ORTHOMIN, An iterative method for solv-
ing sparse sets of simultaneous linear equations. Proceedings of SPE 
Symposium on Numerical Simulation of Reservoir Performance, Feb. 
19-20, Los Angeles, California, pp: 5729. 

[30] Yildirim, A., 2008. Solution of BVPs for fourth-order integro differen-
tial equations by using homotopy perturbation method. Comput. 
Math. Appli., 32:1711-1716. DOI: 10.1016/j.advwatres.2009.09.003 

[31] Zhao, J. and R.M. Corless, 2006. Compact finite difference method for 
integro-differential equations. Applied Math. Comput., 177: 325-328. 
DOI: 10.1016/j.amc.2005.11.007 

 
 
 

IJSER

http://www.ijser.org/

	1 Introduction
	2 Preliminaries
	3 Single-Term Haar Wavelet Series Method
	4 Numerical Examples for Fredholm Integro-Differential Equations of First Order
	5 Numerical Example for Fredholm Integro-Differential Equations of Second Order
	6 Conclusion
	Acknowledgment
	References



